Professional Meetings

An welchen Konferenz und Workshops nimmt das IHT teil?

  1. 2022

    1. M. Wanitzek, M. Oehme, C. Spieth, D. Schwarz, L. Seidel, und J. Schulze, „GeSn-on-Si Avalanche Photodiodes for Short-Wave Infrared Detection“, in ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC), Sep. 2022, S. 169–172. doi: 10.1109/ESSCIRC55480.2022.9911363.
    2. L. Seidel u. a., „Electroluminescence of SiGeSn/GeSn pin-Diodes Grown on a GeSn Buffer“, in ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC), Sep. 2022, S. 165–168. doi: 10.1109/ESSCIRC55480.2022.9911458.
    3. D. Schwarz, J. Ziegler, H. S. Funk, J. Schulze, und M. Oehme, „Hydrogen-Assisted Molecular Beam Epitaxy of SiGeSn“, ECS Meeting Abstracts, Bd. MA2022-02, Nr. 32, Art. Nr. 32, Okt. 2022, doi: 10.1149/MA2022-02321164mtgabs.
    4. M. Oehme u. a., „Monolithic Integration of Gesn on Si for IR Camera Demonstration“, ECS Meeting Abstracts, Bd. MA2022-02, Nr. 32, Art. Nr. 32, Okt. 2022, doi: 10.1149/MA2022-02321169mtgabs.
    5. B. Marzban u. a., „Modeling and design of an electrically pumped SiGeSn microring laser“, in Silicon Photonics XVII, März 2022. doi: 10.1117/12.2609537.
    6. D. Buca, M. El kurdi, J. Witzens, M. Oehme, G. Capellini, und D. Gruetzmacher, „Gesn Alloys: From Optical to Electrical Pumped Lasers“, ECS Meeting Abstracts, Bd. MA2022-02, Nr. 32, Art. Nr. 32, Okt. 2022, doi: 10.1149/MA2022-02321166mtgabs.
  2. 2021

    1. D. Weißhaupt u. a., „Formation of Mn5Ge3 on a Recess-Etched Ge (111) Quantum-Well Structure for Semiconductor Spintronics“, in 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Sep. 2021, S. 45–49. doi: 10.23919/MIPRO52101.2021.9596924.
    2. E. Sigle u. a., „Strained Ge Channels with High Hole Mobility Grown on Si Substrates by Molecular Beam Epitaxy“, in 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Sep. 2021, S. 40–44. doi: 10.23919/MIPRO52101.2021.9597145.
    3. L. Seidel u. a., „Electrical Characterization of SiGeSn/Ge/GeSn-pin-Heterodiodes at Low Temperatures“, in 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Sep. 2021, S. 55–59. doi: 10.23919/MIPRO52101.2021.9597082.
    4. D. Schwarz u. a., „MBE-Grown Ge0.92Sn0.08 Diode on RPCVD-Grown Partially Relaxed Virtual Ge0.92Sn0.08 Substrate“, in 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Sep. 2021, S. 50–54. doi: 10.23919/MIPRO52101.2021.9596634.
    5. M. Oehme u. a., „Ge-on-Si camera for NIR detection“, in 2021 IEEE 17th International Conference on Group IV Photonics (GFP), Dez. 2021, S. 1–2. doi: 10.1109/GFP51802.2021.9673939.
    6. H. S. Funk, D. Weißhaupt, D. Schwarz, D. Bloos, J. Van Slageren, und J. Schulze, „Characterization of Fe Micromagnets for Semiconductor Spintronics by In-Field Magnetic Force Microscopy“, in 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Sep. 2021, S. 31–35. doi: 10.23919/MIPRO52101.2021.9596763.
    7. F. Berkmann, M. Ayasse, F. Mörz, I. A. Fischer, und J. Schulze, „Titanium and Nickel as alternative materials for mid Infrared Plasmonic“, in 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Sep. 2021, S. 36–39. doi: 10.23919/MIPRO52101.2021.9597155.
  3. 2020

    1. M. M. Dettling u. a., „Carrier mobilities in heavily doped pseudomorphic Ge1-x Snx-epilayers“, in 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Sep. 2020, S. 17–21. doi: 10.23919/MIPRO48935.2020.9245273.
  4. 2019

    1. M. C. J. Weiser u. a., „Fabrication of GePb-Alloys by Means of Pulsed Laser Induced Epitaxy“, in 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Mai 2019, S. 1–6. doi: 10.23919/MIPRO.2019.8756640.
    2. D. Schwarz, M. Oehme, und J. Schulze, „Alloy Stability of Ge1−xSnx with Sn Concentrations up to 15% Utilizing Low-Temperature Molecular Beam Epitaxy“, 2019.
    3. P. Povolni u. a., „Electrical Characterization of Fabricated pin Diodes made from SixGe1-x-ySny with an Embedded Ge1-xSnx Quantum Well“, in 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Mai 2019, S. 1–6. doi: 10.23919/MIPRO.2019.8757211.
    4. A.-C. Köllner u. a., „A 2x2 Pixel Array Camera based on a Backside Illuminated Ge-on-Si Photodetector“, in 2019 IEEE SENSORS, Okt. 2019, S. 1–4. doi: 10.1109/SENSORS43011.2019.8956731.
    5. L. Gebert, D. Schwarz, A. Elsayed, und J. Schulze, „Electrical Characterization of pure Boron-on-Germanium pin Diodes“, in 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Mai 2019, S. 13–18. doi: 10.23919/MIPRO.2019.8757123.
    6. H. S. Funk u. a., „Magnetic Characterization of a Mn Based Ferromagnet on SixGe(1-x-y)Sny with High Sn Content“, The Electrochemical Society Transactions, Bd. 93, Nr. 1, Art. Nr. 1, 2019, doi: 10.1149/09301.0101ecst.
    7. J. F. Dick, A. Elsayed, D. Schwarz, und J. Schulze, „Electrical Characterization of Low-Temperature Boron on Silicon Deposition utilizing Molecular Beam Epitaxy“, in 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Mai 2019, S. 19–23. doi: 10.23919/MIPRO.2019.8756927.
  1. D. Schwarz, I. A. Fischer, M. Oehme, P. Zaumseil, G. Capellini, und J. Schulze, „Temperature stability of MBE-grown SixGe1-x-ySny structures with high Sn content“, 2018.
  2. D. Schwarz u. a., „MBE-Grown SixGe1-x-ySny diode and quantum well diode structures with high Sn content for optical applications“, 2018.
  3. J. Schulze, C. J. Clausen, D. Schwarz, P. Zaumseil, G. Capellini, und I. A. Fischer, „Ultra-thin Sn-rich GeSn quantum well structures“, 2018.
  4. J. Schlipf u. a., „FDTD simulation of enhanced Faraday effect in plasmonic composite structures with rectangularly arranged Au particles.“, in 2018 IEEE International Magnetic Conference (INTERMAG), Apr. 2018, S. 1–2. doi: 10.1109/INTMAG.2018.8508694 .
  5. M. Oehme, D. Schwarz, J. Schulze, C. J. Clausen, und I. A. Fischer, „SiGeSn material for integrated optical devices“, Mai 2018. doi: 10.1117/12.2318011 .
  6. M. Kern u. a., „Integration of Molecular Quantum Bits with Semiconductor Spintronics“, 2018.
  7. Y. Kawaguchi, L. Augel, H. Uchida, M. Inoue, J. Schulze, und I. A. Fischer, „Simulation-based optimization of Ge-PIN-photodiodes with Al nanohole arrays for refractive index sensing“, in 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Mai 2018, S. 0023–0026. doi: 10.23919/MIPRO.2018.8400004 .
  8. L. A. Hänel, Y. Elogail, D. Schwarz, I. A. Fischer, und J. Schulze, „Performance of C6H8O7-treated and H- and Cl-passivated Ge-MOS-capacitances on Ge-virtual-substrate on Si(001)“, in 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Mai 2018, S. 0027–0031. doi: 10.23919/MIPRO.2018.8400005 .
  9. H. S. Funk u. a., „Mn5Ge3 thin film contacts for semiconductor spintronics“, 2018.
  10. I. A. Fischer u. a., „Spin-Injektion in Ge using Mn-based ferromagnetic electrodes“, 2018.
  11. C. J. Clausen u. a., „Tunnel Injection into Group IV Semiconductors and its Application to Light-Emitting Devices“, in 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM), Juli 2018, S. 29–30. doi: 10.1109/PHOSST.2018.8456688 .
  12. F. Berkmann u. a., „Optical characterization of highly n-type doped Ge0.95Sn0.05 rod antennas on Si(001) substrates“, in 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Mai 2018, S. 0032–0035. doi: 10.23919/MIPRO.2018.8400006 .
  1. D. Weisshaupt, P. Jahandar, G. Colston, P. Allred, J. Schulze, und M. Myronov, „Impact of Sn segregation on Ge1−xSnx epi-layers growth by RP-CVD“, in 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Mai 2017, S. 43–47. doi: 10.23919/MIPRO.2017.7973388 .
  2. D. Schwarz, M. Oehme, und J. Schulze, „Growth of Si1-x-yGexSny structures with high Sn content for bandgap investigation (Austrian MBE Workshop)“, 2017.
  3. B. Schwartz, M. Oehme, R. Koerner, S. Bechler, J. Schulze, und M. Kittler, „Luminescence of strained Ge on GeSn virtual substrate grown on Si (001)“, in Silicon Photonics XII, Feb. 2017. doi: 10.1117/12.2249564 .
  4. J. Schlipf, J. L. Frieiro, I. A. Fischer, C. Serra, J. Schulze, und S. Chiussi, „Growth of patterned GeSn and GePb alloys by pulsed laser induced epitaxy“, in 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Mai 2017, S. 37–42. doi: 10.23919/MIPRO.2017.7973387 .
  5. R. Koerner, D. Schwarz, C. Clausen, M. Oehme, I. A. Fischer, und J. Schulze, „The Germanium Zener-Emitter for Silicon Photonics“, 2017.
  6. R. Koerner, I. A. Fischer, M. Oehme, C. Clausen, und J. Schulze, „Zener tunnel-injection for Ge optical amplifiers, lasers and modulators (invited)“, in 2017 IEEE 14th International Conference on Group IV Photonics (GFP), Aug. 2017, S. 11–12. doi: 10.1109/GROUP4.2017.8082171 .
  7. R. Koerner u. a., „Tunnel-modulated Ge LED/laser light source and a sub-thermal voltage switching detector for the monolithic on-chip optical transceiver“, in 2017 IEEE International Electron Devices Meeting (IEDM), Dez. 2017, S. 24.4.1-24.4.4. doi: 10.1109/IEDM.2017.8268453 .
  8. L. Augel, R. Körner, S. Bechler, J. Schulze, und I. A. Fischer, „Ge PIN photodetectors with nanohole arrays for refractive index sensing“, in 2017 IEEE 14th International Conference on Group IV Photonics (GFP), Aug. 2017, S. 161–162. doi: 10.1109/GROUP4.2017.8082246 .
  1. W. Zhang u. a., „Small-signal IMPATT diode characterization for mm-wave power generation in monolithic scenarios“, in 2016 46th European Solid-State Device Research Conference (ESSDERC), Sep. 2016, S. 109–112. doi: 10.1109/ESSDERC.2016.7599600 .
  2. R. Koerner u. a., „The Zener-Emitter: Electron injection by direct-tunneling in Ge LEDs for the on-chip Si light source“, in 2016 74th Annual Device Research Conference (DRC), Juni 2016, S. 1–2. doi: 10.1109/DRC.2016.7548478 .
  3. R. Koerner u. a., „The Zener-Emitter: A novel superluminescent Ge optical waveguide-amplifier with 4.7 dB gain at 92 mA based on free-carrier modulation by direct Zener tunneling monolithically integrated on Si“, in 2016 IEEE International Electron Devices Meeting (IEDM), Dez. 2016, S. 22.5.1-22.5.4. doi: 10.1109/IEDM.2016.7838474 .
  4. I. A. Fischer, F. Oliveira, A. Benedetti, S. Chiussi, und J. Schulze, „(Si)GeSn nanostructures for optoelectronic device applications“, in 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Mai 2016, S. 1–4. doi: 10.1109/MIPRO.2016.7522099 .
  5. L. Augel u. a., „Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors“, in Plasmonics in Biology and Medicine XIII, Apr. 2016. doi: 10.1117/12.2212650 .
  1. W. Zhang u. a., „Systematic characterization of Silicon IMPATT diode for Monolithic E-band amplifier design“, in 2015 German Microwave Conference, März 2015, S. 135–138. doi: 10.1109/GEMIC.2015.7107771 .
  2. B. Schwartz u. a., „Comparison of EL emitted by LEDs on Si substrates containing Ge and Ge/GeSn MQW as active layers“, in Silicon Photonics X, Feb. 2015. doi: 10.1117/12.2080816 .
  3. E. Kasper und M. Oehme, „Germanium tin light emitters on silicon“, JAPANESE JOURNAL OF APPLIED PHYSICS, Bd. 54, Nr. 4, SI, Art. Nr. 4, SI, Apr. 2015, doi: 10.7567/JJAP.54.04DG11 .
  4. E. Kasper und W. Zhang, „SIMMWIC integration of millimeter-wave antenna with two terminal devices for medical applications“, in 2015 IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Jan. 2015, S. 1–3. doi: 10.1109/SIRF.2015.7119855 .
  5. I. A. Fischer, L. Augel, S. Jitpakdeebodin, N. Franz, S. Fleischer, und J. Schulze, „Plasmonics-integrated Ge PIN-photodetectors: efficiency enhancement by Al nanoantennas and plasmon detection“, in International Conference on Optics and Photonics 2015, Juni 2015. doi: 10.1117/12.2192161 .

W. Zhang u. a., „A reliable 40 GHz opto-electrical system for characterization of frequency response of Ge PIN photo detectors“, in 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), Juni 2014, S. 117–118. doi: 10.1109/ISTDM.2014.6874649 .

Zum Seitenanfang